Lattice-Based Cryptography

A Gentle Introduction

Katharina Boudgoust

CNRS, Univ Montpellier, LIRMM, France

Cryptography

The word **cryptography** is composed of the two ancient Greek words *kryptos* (hidden) and *graphein* (to write). Its goal is to provide secure communication.

- Encryption
- Digital Signatures

Cryptography

The word **cryptography** is composed of the two ancient Greek words *kryptos* (hidden) and *graphein* (to write). Its goal is to provide secure communication.

- Encryption
- Digital Signatures
- Zero-Knowledge Proofs
- Fully-Homomorphic Encryption

Context

✤ The security in public-key cryptography relies on presumably hard mathematical problems.

Currently used problems:

- Discrete logarithm
- Factoring

Given N, find p, q such that $N = p \cdot q$

Katharina Boudgoust (CNRS, LIRMM)

^{*}Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM Journal of Computations 1997

Context

C The security in public-key cryptography relies on presumably hard mathematical problems.

Currently used problems:

Discrete logarithm
 Eactoring

```
Given N, find p, q such that N = p \cdot q
```

▲ ∃ poly-time quantum algorithm [Sho97]*

Quantum-resistant candidates:

- Codes
- Lattices
- Isogenies
- Multivariate systems

• ?

Katharina Boudgoust (CNRS, LIRMM)

^{*}Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM Journal of Computations 1997

Context

C The security in public-key cryptography relies on presumably hard mathematical problems.

Currently used problems:

Discrete logarithm
Eactoring

Given N, find p, q such that $N = p \cdot q$

▲ ∃ poly-time quantum algorithm [Sho97]*

Quantum-resistant candidates:

- Codes
- Lattices \Rightarrow TODAY
- Isogenies
- Multivariate systems

• ?

Katharina Boudgoust (CNRS, LIRMM)

^{*}Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM Journal of Computations 1997

US National Institute of Standards and Technology (NIST) Project 🔀

- 2016: start of NIST's post-quantum cryptography project*
- 2022: selection of 4 schemes, 3 of them relying on lattice problems

C Lattice-based cryptography plays a leading role in designing post-quantum cryptography.

^{*}https://csrc.nist.gov/projects/post-quantum-cryptography

April 18, 2024

ia.cr/2024/555

Lattice-Based Cryptography

April 18, 2024

ia.cr/2024/555

Lattice-Based Cryptography

Overview of Today's Presentation

Questions we are trying to answer today:

- Part 1: What are lattices?
- Part 2: What are lattice problems?
- Part 3: What is lattice-based cryptography?
- Part 4: What are some (of my) current challenges?

References:

- The Lattice Club [website]
- Crash Course Spring 2022 [lecture notes]

Part 1: *What is a lattice?*

 \mathcal{O} An Euclidean lattice Λ is a discrete additive subgroup of \mathbb{R}^n .

 \mathcal{O} An Euclidean lattice Λ is a discrete additive subgroup of \mathbb{R}^n .

- additive subgroup: $\mathbf{0} \in \Lambda$, and for all $\mathbf{x}, \mathbf{y} \in \Lambda$ it holds $\mathbf{x} + \mathbf{y}, -\mathbf{x} \in \Lambda$;
- discrete: every $\mathbf{x} \in \Lambda$ has a neighborhood in which \mathbf{x} is the only lattice point. $\exists \varepsilon > 0$ such that $\mathcal{B}(\mathbf{x}, \varepsilon) \cap \Lambda = \{\mathbf{x}\}$

 \mathcal{O} An Euclidean lattice Λ is a discrete additive subgroup of \mathbb{R}^n .

- additive subgroup: $\mathbf{0} \in \Lambda$, and for all $\mathbf{x}, \mathbf{y} \in \Lambda$ it holds $\mathbf{x} + \mathbf{y}, -\mathbf{x} \in \Lambda$;
- discrete: every $\mathbf{x} \in \Lambda$ has a neighborhood in which \mathbf{x} is the only lattice point. $\exists \varepsilon > 0$ such that $\mathcal{B}(\mathbf{x}, \varepsilon) \cap \Lambda = \{\mathbf{x}\}$

There exists a finite basis $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n) \subset \mathbb{R}^n$ such that

$$\Lambda(\mathbf{B}) = \left\{ \sum_{i=1}^{n} z_i \mathbf{b}_i \colon z_i \in \mathbb{Z} \right\}.$$

 $\bullet \ n$ is the dimension of Λ

Let $\mathbf{B} \in \mathbb{R}^{n \times n}$ be a basis for Λ , i.e.,

$$\Lambda(\mathbf{B}) = \left\{ \sum_{i=1}^{n} z_i \mathbf{b}_i \colon z_i \in \mathbb{Z} \right\} = \left\{ \mathbf{B} \mathbf{z} \colon \mathbf{z} \in \mathbb{Z}^n \right\}.$$

Let $\mathbf{B} \in \mathbb{R}^{n \times n}$ be a basis for Λ , i.e.,

$$\Lambda(\mathbf{B}) = \left\{ \sum_{i=1}^{n} z_i \mathbf{b}_i \colon z_i \in \mathbb{Z} \right\} = \left\{ \mathbf{B} \mathbf{z} \colon \mathbf{z} \in \mathbb{Z}^n \right\}.$$

• $\mathbf{U} \in \mathbb{Z}^{n \times n}$ unimodular, then $\widetilde{\mathbf{B}} = \mathbf{B} \cdot \mathbf{U}$ also a basis of Λ $\det(\mathbf{U}) = \pm 1$ • $\det(\Lambda) := |\det(\mathbf{B})|$

Lattice Minimum & Special Lattices

The minimum of a lattice $\Lambda \subset \mathbb{R}^n$ is defined as

$$\lambda_1(\Lambda) = \min_{\mathbf{x} \in \Lambda \setminus \{\mathbf{0}\}} \|\mathbf{x}\|_2.$$

Lattice Minimum & Special Lattices

The minimum of a lattice $\Lambda \subset \mathbb{R}^n$ is defined as

$$\lambda_1(\Lambda) = \min_{\mathbf{x} \in \Lambda \setminus \{\mathbf{0}\}} \|\mathbf{x}\|_2.$$

Let
$$\mathbf{A} \in \mathbb{Z}_q^{m \times n}$$
 for some $n, m, q \in \mathbb{N}$ with $n \leq m$

 \mathbb{Z}_q integers modulo q

Part 2: <u>What are lattice problems?</u>

Bounded Distance Decoding

Given a lattice $\Lambda \in \mathbb{R}^n$ of dimension n and a target $\mathbf{t} \in \mathbb{R}^n$ such dist $(\Lambda, \mathbf{t}) \leq \delta < \lambda_1(\Lambda)/2$.

Bounded Distance Decoding

Given a lattice $\Lambda \in \mathbb{R}^n$ of dimension n and a target $\mathbf{t} \in \mathbb{R}^n$ such dist $(\Lambda, \mathbf{t}) \leq \delta < \lambda_1(\Lambda)/2$.

The bounded distance decoding (BDD_δ) problem asks to find the unique vector $\mathbf{w}\in\Lambda$ such that

$$\|\mathbf{w} - \mathbf{t}\|_2 \le \delta.$$

Bounded Distance Decoding

Given a lattice $\Lambda \in \mathbb{R}^n$ of dimension n and a target $\mathbf{t} \in \mathbb{R}^n$ such dist $(\Lambda, \mathbf{t}) \leq \delta < \lambda_1(\Lambda)/2$.

The bounded distance decoding (BDD_{\delta}) problem asks to find the unique vector $\mathbf{w} \in \Lambda$ such that

$$\|\mathbf{w} - \mathbf{t}\|_2 \le \delta.$$

The complexity of BDD_{δ} increases with n and with δ .

Conjecture:

There is no polynomial-time classical or quantum algorithm that solves BDD_{δ} on any lattice to within inverse polynomial factors.

Given a matrix $\mathbf{A} \leftarrow \mathsf{Unif}(\mathbb{Z}_q^{m \times n})$.

Given a vector $\mathbf{b} \in \mathbb{Z}_q^m$, where $\mathbf{b} = \mathbf{As} + \mathbf{e} \mod q$ for

- secret $\mathbf{s} \in \mathbb{Z}_q^n$ sampled from distribution D_s and
- noise/error $\mathbf{e} \in \mathbb{Z}^m$ sampled from distribution D_e such that $\|\mathbf{e}\|_2 \leq \delta \ll q$.

^{*}Regev, On lattices, learning with errors, random linear codes, and cryptography, STOC'05

Given a matrix $\mathbf{A} \leftarrow \mathsf{Unif}(\mathbb{Z}_q^{m \times n})$.

Given a vector $\mathbf{b} \in \mathbb{Z}_q^m$, where $\mathbf{b} = \mathbf{As} + \mathbf{e} \mod q$ for

- secret $\mathbf{s} \in \mathbb{Z}_q^n$ sampled from distribution D_s and
- noise/error $\mathbf{e} \in \mathbb{Z}^m$ sampled from distribution D_e such that $\|\mathbf{e}\|_2 \leq \delta \ll q$.

Search learning with errors (S-LWE $_{\delta}$) asks to find s.

Decision learning with errors (D-LWE_{δ}) asks to distinguish (**A**, **b**) from the uniform distribution over $\mathbb{Z}_q^{m \times n} \times \mathbb{Z}_q^m$.

^{*}Regev, On lattices, learning with errors, random linear codes, and cryptography, STOC'05

Given a matrix $\mathbf{A} \leftarrow \mathsf{Unif}(\mathbb{Z}_q^{m \times n})$.

Given a vector $\mathbf{b} \in \mathbb{Z}_q^m$, where $\mathbf{b} = \mathbf{As} + \mathbf{e} \mod q$ for

- secret $\mathbf{s} \in \mathbb{Z}_q^n$ sampled from distribution D_s and
- noise/error $\mathbf{e} \in \mathbb{Z}^m$ sampled from distribution D_e such that $\|\mathbf{e}\|_2 \leq \delta \ll q$.

Search learning with errors (S-LWE_{δ}) asks to find s.

Decision learning with errors (D-LWE_{δ}) asks to distinguish (A,b) from the uniform distribution over $\mathbb{Z}_q^{m \times n} \times \mathbb{Z}_q^m$.

A The present noise makes S-LWE a hard problem.

A The norm restriction on e makes D-LWE a hard problem!

Katharina Boudgoust (CNRS, LIRMM)

Lattice-Based Cryptography

^{*}Regev, On lattices, learning with errors, random linear codes, and cryptography, STOC'05

Given a matrix $\mathbf{A} \leftarrow \mathsf{Unif}(\mathbb{Z}_q^{m \times n})$.

Given a vector $\mathbf{b} \in \mathbb{Z}_q^m$, where $\mathbf{b} = \mathbf{As} + \mathbf{e} \mod q$ for

- secret $\mathbf{s} \in \mathbb{Z}_q^n$ sampled from distribution D_s and
- noise/error $\mathbf{e} \in \mathbb{Z}^m$ sampled from distribution D_e such that $\|\mathbf{e}\|_2 \leq \delta \ll q$.

Search learning with errors (S-LWE_{δ}) asks to find s.

Decision learning with errors (D-LWE_{δ}) asks to distinguish (A,b) from the uniform distribution over $\mathbb{Z}_q^{m \times n} \times \mathbb{Z}_q^m$.

A The present noise makes S-LWE a hard problem.

A The norm restriction on e makes D-LWE a hard problem!

 \mathcal{O} S-LWE_{δ} equals BDD_{δ} in the lattice $\Lambda_q(\mathbf{A}) = \{ \mathbf{y} \in \mathbb{Z}^m \colon \mathbf{y} = \mathbf{As} \mod q, \ \mathbf{s} \in \mathbb{Z}^n \}.$

^{*}Regev, On lattices, learning with errors, random linear codes, and cryptography, STOC'05

Part 3:

What is lattice-based cryptography?

Katharina Boudgoust (CNRS, LIRMM)

Lattice-Based Cryptography

12th July 2024, ICO Montpellier 14 / 29

Public-Key Encryption (PKE)

A public-key encryption scheme $\Pi = (\mathsf{KGen},\mathsf{Enc},\mathsf{Dec})$ consists of three algorithms:

- KGen $(1^{\lambda}) \rightarrow (sk, pk)$ λ security parameter
- $\bullet \; \operatorname{Enc}(\mathsf{pk},m) \to \mathsf{ct}$
- Dec(sk, ct) = m'

Correctness: Dec(sk, Enc(pk, m)) = m during an honest execution

Semantic Security: $Enc(pk, m_0)$ is indistinguishable from $Enc(pk, m_1)$ (IND-CPA)

Let χ be distribution on \mathbb{Z} .

- KGen (1^{λ}) :
 - $\mathbf{A} \leftarrow \mathsf{Unif}(\mathbb{Z}_q^{n \times n})$ and $\mathbf{s}, \mathbf{e} \leftarrow \chi^n$
 - $\mathbf{b} = \mathbf{As} + \mathbf{e} \mod q$
 - Output sk = s and $pk = (\mathbf{A}, \mathbf{b})$

Let χ be distribution on \mathbb{Z} .

- KGen(1^λ):

 A ← Unif(Z_q^{n×n}) and s, e ← χⁿ
 b = As + e mod q
 Output sk = s and pk = (A, b)

 Enc(pk, m ∈ {0,1}):

 r, f ← χⁿ and f' ← χ
 u = rA + f
 v = rb + f' + ⌊q/2⌋ ⋅ m
 - Output $ct = (\mathbf{u}, v)$

Let χ be distribution on \mathbb{Z} .

• KGen (1^{λ}) : • $\mathbf{A} \leftarrow \mathsf{Unif}(\mathbb{Z}_q^{n \times n})$ and $\mathbf{s}, \mathbf{e} \leftarrow \chi^n$ $\mathbf{A} \quad \mathbf{s} + \mathbf{e} = \mathbf{b}$ Α , $\mathbf{b} = \mathbf{As} + \mathbf{e} \mod q$ • Output sk = s and pk = (A, b)• $Enc(pk, m \in \{0, 1\})$: • $\mathbf{r}, \mathbf{f} \leftarrow \chi^n$ and $f' \leftarrow \chi$ Α f' +r m $\mathbf{v} = \mathbf{r}\mathbf{A} + \mathbf{f}$ $\mathbf{v} = \mathbf{r}\mathbf{b} + f' + |q/2| \cdot m$ • Output $ct = (\mathbf{u}, v)$ Dec(sk, ct): ¾ q • If $v - \mathbf{us}$ is closer to 0 than to q/2, output m' = 0Else output m' = 1

Correctness:

$$v - \mathbf{us} = \mathbf{r}(\mathbf{As} + \mathbf{e}) + f' + \lfloor q/2 \rfloor \cdot m - (\mathbf{rA} + \mathbf{f})\mathbf{s}$$
$$= \underbrace{\mathbf{re} + f' - \mathbf{fs}}_{\text{ciphertext noise}} + \lfloor q/2 \rfloor m$$

Decryption succeeds if |*| < q/8

m

Correctness: Let χ be *B*-bounded with $2nB^2 + B < q/8$

$$v - \mathbf{us} = \mathbf{r}(\mathbf{As} + \mathbf{e}) + f' + \lfloor q/2 \rfloor \cdot m - (\mathbf{rA} + \mathbf{f})\mathbf{s}$$
$$= \underbrace{\mathbf{re} + f' - \mathbf{fs}}_{\ast} + \lfloor q/2 \rfloor m$$
$$\underbrace{\mathbf{re} + f' - \mathbf{fs}}_{\ast} + \lfloor q/2 \rfloor m$$

Decryption succeeds if $|\ast| < q/8$

$$|*| = |\mathbf{r}\mathbf{e} + f' - \mathbf{fs}| \le \|\mathbf{r}\|_2 \cdot \|\mathbf{e}\|_2 + \|\mathbf{f}\|_2 \cdot \|\mathbf{s}\|_2 + |f'| \le 2(\sqrt{n}B \cdot \sqrt{n}B) + B < q/8$$

► Else output m' = 1

Semantic Security: Assume hardness of decision LWE

- 1. replace \mathbf{b} by uniform random vector
- 2. replace non-message part (*) by uniform random vector
- 3. then the message is completely hidden

Kyber - Selected for Standardization by NIST

rightarrow Kyber = the previous construction + several improvements

Main improvements:

- 1. Structured LWE variant (most important)
- 2. LWE secret and noise from centered binomial distribution
- 3. Pseudorandomness for distributions
- 4. Ciphertext compression

Sources:

- Website of Kyber: https://pq-crystals.org/kyber/
- Latest specifications [link]
- Tutorial by V. Lyubashevsky [link]

Example Parameters for Learning With Errors

Kyber Parameters:

A ∈ Z^{n×m}_q, s ← D_s, e ← D_e
m = ?
n = ?
q = ?
D_e = ?
D_s = ?

^{*}https://github.com/malb/lattice-estimator

Example Parameters for Learning With Errors

Kyber Parameters:

- $\mathbf{A} \in \mathbb{Z}_q^{n imes m}$, $\mathbf{s} \leftarrow D_s$, $\mathbf{e} \leftarrow D_e$
- m = n
- n = ?
- q = ?
- $D_e = ?$

n	q	$\ \mathbf{e}\ _{\infty}$	security bits
512	3329	3	118
768	3329	2	183
1024	3329	2	256

*https://github.com/malb/lattice-estimator

Part 4:

What are (my) current challenges?

Katharina Boudgoust (CNRS, LIRMM)

Lattice-Based Cryptography

12th July 2024, ICO Montpellier 19 / 29

Reminder: Public-Key Encryption (PKE)

A public-key encryption scheme $\Pi = (KGen, Enc, Dec)$ consists of three algorithms:

• $\mathsf{KGen}(1^{\lambda}) \to (\mathsf{sk},\mathsf{pk})$

 λ security parameter

- $\bullet \; \operatorname{Enc}(\mathsf{pk},m) \to \mathsf{ct}$
- $\bullet \ \operatorname{Dec}(\mathsf{sk},\mathsf{ct}) = m'$

Reminder: Public-Key Encryption (PKE)

A public-key encryption scheme $\Pi = (KGen, Enc, Dec)$ consists of three algorithms:

- $\mathsf{KGen}(1^{\lambda}) \to (\mathsf{sk}, \mathsf{pk})$
- $\bullet \; \operatorname{Enc}(\mathsf{pk},m) \to \mathsf{ct}$
- Dec(sk, ct) = m'

 \bigcirc The secret key sk can be seen as a single point of failure.

- Someone else learns it: security issue
- I loose it: operability issue

 λ security parameter

Home > Cryptocurrency > Youtuber Loses \$60,000 In Crypto and NFTs After Exposing His Private Key...

Cryptocurrency Nev

Youtuber Loses \$60,000 In Crypto and NFTs After Exposing His Private Key While Live Streaming

By Newton Gitonga - September 2, 2023

DARRYN POLLOCK

NOV 30, 2017

Infamous Discarded Hard Drive Holding 7,500 Bitcoins Would be Worth \$80 Million Today

Cryptonews + Altcoin News + LHV Bank Founder Has Lost Private Key to ETH Stash Worth \$470 Million

LHV Bank Founder Has Lost Private Key to ETH Stash Worth \$470 Million

Ruholamin Haqshanas

Last updated: November 7, 2023 02:36 EST 2 min read

f 🗶 in 🛪 📾

Motivation Threshold Cryptography [DF89]*

The secret key can be seen as a single point of failure.

? Idea: divide the secret key into multiple shares

Better security: multiple secret key shares needed

Setter operability: not necessarily all secret key shares needed

Katharina Boudgoust (CNRS, LIRMM)

Lattice-Based Cryptography

^{*}Desmedt and Frankel, Threshold Cryptosystems, CRYPTO'89

Threshold Public-Key Encryption

PKE scheme:

- $\bullet \ \mathsf{KGen} \to (\mathsf{pk}, \underline{\mathsf{sk}})$
- $\bullet \; \operatorname{Enc}(\mathsf{pk},m) \to \mathsf{ct}$

 $m \in \{0,1\}$

• $Dec(sk, ct) \rightarrow m$

Threshold Public-Key Encryption

t-out-of-*n* Threshold PKE scheme:

- KGen $\rightarrow (\mathsf{pk}, \mathsf{sk}_1, \dots, \mathsf{sk}_n)$
- $\bullet \; \operatorname{Enc}(\mathsf{pk},m) \to \mathsf{ct}$
- $PartDec(sk_i, ct) \rightarrow d_i$
- Combine $(\{d_i\}_{i\in S}) \to m$

 $m \in \{0, 1\}$

 $S \subseteq \{1, \ldots, n\}$

Threshold Public-Key Encryption

t-out-of-n Threshold PKF scheme

- KGen \rightarrow (pk, sk₁,..., sk_n)
- $Enc(pk, m) \rightarrow ct$ $m \in \{0, 1\}$
- PartDec($\mathsf{sk}_i, \mathsf{ct}$) $\rightarrow d_i$ • Combine($\{d_i\}_{i \in S}$) $\rightarrow m$ $S \subseteq \{1, \ldots, n\}$

Properties:

- Correctness t parties can recover the message
- Security

less than t parties learn nothing about message

Applications:

- Encrypting highly sensitive data
- Electronic voting protocols

Research Question

Can we construct Threshold Public-Key Encryption based on **Euclidean Lattices**?

^{*}Bendlin and Damgaard, Threshold decryption and zero-knowledge proofs for lattice-based cryptosystems, TCC'10

^{*}Boudgoust and Scholl, Simple threshold (fully homomorphic) encryption from LWE with polynomial modulus, Asiacrypt'23

^{*}Micciancio and Suhl, Simulation-Secure Threshold PKE from LWE with Polynomial Modulus, e-print'23

Research Question

Can we construct Threshold Public-Key Encryption based on **Euclidean Lattices**?

Yes, but . . .

Either:	Or:	Or:
Inefficient	Efficient	Efficient
Strong Security	Weaker Security	Strong Security
Any distributions	Any distributions	Only Gaussians
[BD10]*	[BS23]*	[MS23]*

*Bendlin and Damgaard, Threshold decryption and zero-knowledge proofs for lattice-based cryptosystems, TCC'10

*Boudgoust and Scholl, Simple threshold (fully homomorphic) encryption from LWE with polynomial modulus, Asiacrypt'23

*Micciancio and Suhl, Simulation-Secure Threshold PKE from LWE with Polynomial Modulus, e-print'23

Research Question

Can we construct Threshold Public-Key Encryption based on **Euclidean Lattices**?

Yes, but . . .

Either:	Or:	Or:	OPEN:
Inefficient	Efficient	Efficient	Efficient
Strong Security	Weaker Security	Strong Security	Strong Security
Any distributions	Any distributions	Only Gaussians	Any distributions
[BD10]*	[BS23]*	[MS23]*	

*Bendlin and Damgaard, Threshold decryption and zero-knowledge proofs for lattice-based cryptosystems, TCC'10

*Boudgoust and Scholl, Simple threshold (fully homomorphic) encryption from LWE with polynomial modulus, Asiacrypt'23

* Micciancio and Suhl, Simulation-Secure Threshold PKE from LWE with Polynomial Modulus, e-print'23

Reminder: Public-Key Encryption from LWE [Reg05]

Let χ be distribution on \mathbb{Z} .

- If $v \mathbf{us}$ is closer to 0 than to q/2, output m' = 0
- Else output m' = 1

Correctness:

$$v - \mathbf{us} = \mathbf{r}(\mathbf{As} + \mathbf{e}) + f' + \lfloor q/2 \rfloor \cdot m - (\mathbf{rA} + \mathbf{f})\mathbf{s}$$
$$= \underbrace{\mathbf{re} + f' - \mathbf{fs}}_{\mathbf{F}} + \lfloor q/2 \rfloor m$$
$$* \text{ ciphertext noise}$$

Decryption succeeds if

m

US National Institute of Standards and Technology (NIST) Project $\overline{\mathbb{X}}$

- 2023: initial public draft for Multi-Party Threshold Cryptography*
- 2025: expected submission?

C Threshold cryptography attracts a lot of research interest at the moment.

^{*}https://csrc.nist.gov/Projects/threshold-cryptography

Bonus: *A little Quiz<u>:-)</u>*

When poll is active respond at **PollEv.com/katharinaboudgoust042**

Little Quiz after the gentle introduction to lattice-based cryptography (ICO)

Win up to 1,000 points per answer

Powered by **ID Poll Everywhere**

Wrap-Up

Hopefully you have now a rough idea:

- Part 1: What lattices are!
- Part 2: What lattice problems are!
- Part 3: What lattice-based cryptography is!
- Part 4: What (my) particular challenges are!

Any questions or interested in my research?

- Reach out to me today
- 🔽 Write me an e-mail

Wrap-Up

Hopefully you have now a rough idea:

- Part 1: What lattices are!
- Part 2: What lattice problems are!
- Part 3: What lattice-based cryptography is!
- Part 4: What (my) particular challenges are!

Any questions or interested in my research?

- Reach out to me today
- 🔽 Write me an e-mail

Merci !

Rikke Bendlin and Ivan Damgård.

Threshold decryption and zero-knowledge proofs for lattice-based cryptosystems. In *TCC*, volume 5978 of *Lecture Notes in Computer Science*, pages 201–218. Springer, 2010.

Katharina Boudgoust and Peter Scholl.

Simple threshold (fully homomorphic) encryption from LWE with polynomial modulus.

In ASIACRYPT (1), volume 14438 of Lecture Notes in Computer Science, pages 371–404. Springer, 2023.

Yvo Desmedt and Yair Frankel.

Threshold cryptosystems.

In *CRYPTO*, volume 435 of *Lecture Notes in Computer Science*, pages 307–315. Springer, 1989.

Daniele Micciancio and Adam Suhl.

Simulation-secure threshold PKE from LWE with polynomial modulus. *IACR Cryptol. ePrint Arch.*, page 1728, 2023.

Oded Regev.

On lattices, learning with errors, random linear codes, and cryptography. In *STOC*, pages 84–93. ACM, 2005.

Peter W. Shor.

Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer.

SIAM J. Comput., 26(5):1484–1509, 1997.