Lattice-Based Cryptography

A Gentle Introduction

Katharina Boudgoust

CNRS, Univ Montpellier, LIRMM, France

Cryptography

 $\mathbb C$ The word cryptography is composed of the two ancient Greek words kryptos (hidden) and *graphein* (to write). Its goal is to provide secure communication.

- **•** Encryption
- Digital Signatures

Cryptography

 \mathbb{C} The word cryptography is composed of the two ancient Greek words kryptos (hidden) and *graphein* (to write). Its goal is to provide secure communication.

- **Encryption**
- **•** Digital Signatures
- Zero-Knowledge Proofs
- Fully-Homomorphic Encryption

Context

 \mathbb{C} The security in public-key cryptography relies on presumably hard mathematical problems.

Currently used problems:

- **•** Discrete logarithm
- **•** Factoring

Given N, find p, q such that $N = p \cdot q$

[⋆]Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM Journal of Computations 1997

Context

 \mathbb{C} The security in public-key cryptography relies on presumably hard mathematical problems.

Currently used problems:

• Discrete logarithm **• Eactoring**

```
Given N, find p, q such that N = p \cdot q
```
 \blacktriangle ∃ poly-time quantum algorithm [\[Sho97\]](#page-56-0)*

Quantum-resistant candidates:

- Codes
- **a** Lattices
- **·** Isogenies
- Multivariate systems

?

[⋆]Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM Journal of Computations 1997

Context

 \mathbb{C} The security in public-key cryptography relies on presumably hard mathematical problems.

Currently used problems:

• Discrete logarithm **• Eactoring**

```
Given N, find p, q such that N = p \cdot q
```
 \blacktriangle ∃ poly-time quantum algorithm [\[Sho97\]](#page-56-0)*

Quantum-resistant candidates:

- Codes
- Lattices ⇒ TODAY
- **·** Isogenies
- Multivariate systems

?

[⋆]Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM Journal of Computations 1997

US National Institute of Standards and Technology (NIST) Project $\overline{\mathsf{X}}$

- 2016: start of NIST's post-quantum cryptography project^{*}
- 2022: selection of 4 schemes, 3 of them relying on lattice problems

 \mathbb{C} Lattice-based cryptography plays a leading role in designing post-quantum cryptography.

[⋆] <https://csrc.nist.gov/projects/post-quantum-cryptography>

April 18, 2024

<ia.cr/2024/555>

April 18, 2024

<ia.cr/2024/555>

Overview of Today's Presentation

Questions we are trying to answer today:

- **Part 1: What are lattices?**
- Part 2: What are lattice problems?
- Part 3: What is lattice-based cryptography?
- Part 4: What are some (of my) current challenges?

References:

- **The Lattice Club [\[website\]](https://thelatticeclub.com/)**
- **Crash Course Spring 2022 [\[lecture notes\]](https://katinkabou.github.io/Documents/PhDCourse_LatticeHardnessAssumptions.pdf)**

Part 1: What is a lattice?

ι $^{\bullet}$ An Euclidean lattice Λ is a discrete additive subgroup of $\mathbb{R}^{n}.$

ι $^{\bullet}$ An Euclidean lattice Λ is a discrete additive subgroup of $\mathbb{R}^{n}.$

- additive subgroup: $0 \in \Lambda$, and for all $x, y \in \Lambda$ it holds $x + y, -x \in \Lambda$;
- \bullet discrete: every $\mathbf{x} \in \Lambda$ has a neighborhood in which x is the only lattice point. $\exists \varepsilon > 0$ such that $\mathcal{B}(\mathbf{x}, \varepsilon) \cap \Lambda = \{ \mathbf{x} \}$

ι $^{\bullet}$ An Euclidean lattice Λ is a discrete additive subgroup of $\mathbb{R}^{n}.$

- additive subgroup: $0 \in \Lambda$, and for all $x, y \in \Lambda$ it holds $x + y, -x \in \Lambda$;
- **o** discrete: every $x \in \Lambda$ has a neighborhood in which x is the only lattice point. $\exists \varepsilon > 0$ such that $\mathcal{B}(\mathbf{x}, \varepsilon) \cap \Lambda = \{ \mathbf{x} \}$

There exists a finite basis $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n) \subset \mathbb{R}^n$ such that

$$
\Lambda(\mathbf{B}) = \left\{ \sum_{i=1}^n z_i \mathbf{b}_i : z_i \in \mathbb{Z} \right\}.
$$

 \bullet n is the dimension of Λ

Let $\mathbf{B} \in \mathbb{R}^{n \times n}$ be a basis for Λ , i.e.,

$$
\Lambda(\mathbf{B}) = \left\{ \sum_{i=1}^n z_i \mathbf{b}_i : z_i \in \mathbb{Z} \right\} = \left\{ \mathbf{Bz} : \mathbf{z} \in \mathbb{Z}^n \right\}.
$$

Let $\mathbf{B} \in \mathbb{R}^{n \times n}$ be a basis for Λ , i.e.,

$$
\Lambda(\mathbf{B}) = \left\{ \sum_{i=1}^n z_i \mathbf{b}_i \colon z_i \in \mathbb{Z} \right\} = \left\{ \mathbf{Bz} \colon \mathbf{z} \in \mathbb{Z}^n \right\}.
$$

 $\mathbf{U} \in \mathbb{Z}^{n \times n}$ unimodular, then $\widetilde{\mathbf{B}} = \mathbf{B} \cdot \mathbf{U}$ also a basis of Λ det $(\mathbf{U}) = \pm 1$ • $det(\Lambda) := |det(\mathbf{B})|$

Lattice Minimum & Special Lattices

The minimum of a lattice $\Lambda\subset \mathbb{R}^n$ is defined as

$$
\lambda_1(\Lambda) = \min_{\mathbf{x} \in \Lambda \setminus \{\mathbf{0}\}} \|\mathbf{x}\|_2.
$$

Lattice Minimum & Special Lattices

The minimum of a lattice $\Lambda\subset \mathbb{R}^n$ is defined as

$$
\lambda_1(\Lambda)=\min_{\mathbf{x}\in\Lambda\setminus\{\mathbf{0}\}}\|\mathbf{x}\|_2.
$$

Let
$$
\mathbf{A} \in \mathbb{Z}_q^{m \times n}
$$
 for some $n, m, q \in \mathbb{N}$ with $n \leq m$

 \mathbb{Z}_q integers modulo q

Part 2: What are lattice problems?

Bounded Distance Decoding

Given a lattice $\Lambda \in \mathbb{R}^n$ of dimension n and a target $\mathbf{t} \in \mathbb{R}^n$ such dist $(\Lambda, \mathbf{t}) \leq \delta < \lambda_1(\Lambda)/2$.

Bounded Distance Decoding

Given a lattice $\Lambda \in \mathbb{R}^n$ of dimension n and a target $\mathbf{t} \in \mathbb{R}^n$ such dist $(\Lambda, \mathbf{t}) \leq \delta < \lambda_1(\Lambda)/2$.

The bounded distance decoding (BDD $_{\delta}$) problem asks to find the unique vector $\mathbf{w} \in \Lambda$ such that

$$
\left\|\mathbf{w}-\mathbf{t}\right\|_2 \leq \delta.
$$

Bounded Distance Decoding

Given a lattice $\Lambda \in \mathbb{R}^n$ of dimension n and a target $\mathbf{t} \in \mathbb{R}^n$ such dist $(\Lambda, \mathbf{t}) \leq \delta < \lambda_1(\Lambda)/2$.

The bounded distance decoding (BDD $_{\delta}$) problem asks to find the unique vector $\mathbf{w} \in \Lambda$ such that

$$
\left\Vert \mathbf{w}-\mathbf{t}\right\Vert _{2}\leq\delta.
$$

The complexity of BDD_{δ} increases with n and with δ .

Conjecture:

There is no polynomial-time classical or quantum algorithm that solves BDD_{δ} on any lattice to within inverse polynomial factors.

Given a matrix $\mathbf{A} \leftarrow \mathsf{Unif}(\mathbb{Z}_q^{m \times n})$.

Given a vector $\mathbf{b}\in \mathbb{Z}_q^m$, where $\mathbf{b}=\mathbf{As}+\mathbf{e}\bmod q$ for

- secret $\mathbf{s} \in \mathbb{Z}_q^n$ sampled from distribution D_s and
- noise/error $e \in \mathbb{Z}^m$ sampled from distribution D_e such that $||e||_2 \leq \delta \ll q$.

^{*}Regev, On lattices, learning with errors, random linear codes, and cryptography, STOC'05

Given a matrix $\mathbf{A} \leftarrow \mathsf{Unif}(\mathbb{Z}_q^{m \times n})$.

Given a vector $\mathbf{b}\in \mathbb{Z}_q^m$, where $\mathbf{b}=\mathbf{As}+\mathbf{e}\bmod q$ for

- secret $\mathbf{s} \in \mathbb{Z}_q^n$ sampled from distribution D_s and
- noise/error $e \in \mathbb{Z}^m$ sampled from distribution D_e such that $||e||_2 \leq \delta \ll q$.

Search learning with errors (S-LWE $_{\delta}$) asks to find s.

Decision learning with errors (D-LWE $_{\delta}$) asks to distinguish (A, b) from the uniform distribution over $\mathbb{Z}_q^{m \times n} \times \mathbb{Z}_q^m$.

^{*}Regev, On lattices, learning with errors, random linear codes, and cryptography, STOC'05

Given a matrix $\mathbf{A} \leftarrow \mathsf{Unif}(\mathbb{Z}_q^{m \times n})$.

Given a vector $\mathbf{b}\in \mathbb{Z}_q^m$, where $\mathbf{b}=\mathbf{As}+\mathbf{e}\bmod q$ for

- secret $\mathbf{s} \in \mathbb{Z}_q^n$ sampled from distribution D_s and
- noise/error $e \in \mathbb{Z}^m$ sampled from distribution D_e such that $||\mathbf{e}||_2 \leq \delta \ll q$.

Search learning with errors (S-LWE_{δ}) asks to find s.

Decision learning with errors (D-LWE $_{\delta}$) asks to distinguish (A, b) from the uniform distribution over $\mathbb{Z}_q^{m \times n} \times \mathbb{Z}_q^m$.

 \triangle The present noise makes S-LWE a hard problem.

 \triangle The norm restriction on e makes D-LWE a hard problem!

^{*}Regev, On lattices, learning with errors, random linear codes, and cryptography, STOC'05

Given a matrix $\mathbf{A} \leftarrow \mathsf{Unif}(\mathbb{Z}_q^{m \times n})$.

Given a vector $\mathbf{b}\in \mathbb{Z}_q^m$, where $\mathbf{b}=\mathbf{As}+\mathbf{e}\bmod q$ for

- secret $\mathbf{s} \in \mathbb{Z}_q^n$ sampled from distribution D_s and
- noise/error $e \in \mathbb{Z}^m$ sampled from distribution D_e such that $||e||_2 \leq \delta \ll q$.

Search learning with errors (S-LWE_{δ}) asks to find s.

Decision learning with errors (D-LWE $_{\delta}$) asks to distinguish (A, b) from the uniform distribution over $\mathbb{Z}_q^{m \times n} \times \mathbb{Z}_q^m$.

 \triangle The present noise makes S-LWE a hard problem.

 \triangle The norm restriction on e makes D-LWE a hard problem!

 $\mathbb{C}^{\!\!\!-}$ S-LWE_δ equals BDD_δ in the lattice $\Lambda_q(\mathbf{A}) = \{ \mathbf{y} \in \mathbb{Z}^m \colon \mathbf{y} = \mathbf{A} \mathbf{s} \bmod q, \ \mathbf{s} \in \mathbb{Z}^n \}.$

^{*}Regev, On lattices, learning with errors, random linear codes, and cryptography, STOC'05

Part 3:

What is lattice-based cryptography?

Katharina Boudgoust (CNRS, LIRMM) [Lattice-Based Cryptography](#page-0-0) 12th July 2024, ICO Montpellier 14/29

Public-Key Encryption (PKE)

A public-key encryption scheme $\Pi = (KGen, Enc, Dec)$ consists of three algorithms:

- KGen $(1^{\lambda}) \rightarrow (sk, pk)$ λ security parameter
- Enc(pk, m) \rightarrow ct
- Dec(sk, ct) = m'

Correctness: Dec(sk, Enc(pk, m)) = m during an honest execution

Semantic Security: Enc(pk, m_0) is indistinguishable from Enc(pk, m_1) (IND-CPA)

Let χ be distribution on \mathbb{Z} .

- $\mathsf{KGen}(1^{\lambda})$:
	- \blacktriangleright $\mathbf{A} \leftarrow \mathsf{Unif}(\mathbb{Z}_q^{n \times n})$ and $\mathbf{s}, \mathbf{e} \leftarrow \chi^n$
	- \bullet **b** = **As** + **e** mod *q*
	- \triangleright Output sk = s and pk = (\mathbf{A}, \mathbf{b})

Let χ be distribution on \mathbb{Z} .

- $\mathsf{KGen}(1^{\lambda})$: \blacktriangleright $\mathbf{A} \leftarrow \mathsf{Unif}(\mathbb{Z}_q^{n \times n})$ and $\mathbf{s}, \mathbf{e} \leftarrow \chi^n$ \bullet **b** = **As** + **e** mod *q* \triangleright Output sk = s and pk = (\mathbf{A}, \mathbf{b}) • Enc(pk, $m \in \{0, 1\}$): \blacktriangleright **r**, $f \leftarrow \chi^n$ and $f' \leftarrow \chi$ $\mathbf{u} = \mathbf{r}\mathbf{A} + \mathbf{f}$
	- $\blacktriangleright v = \mathbf{rb} + f' + \lfloor q/2 \rfloor \cdot m$
	- \triangleright Output ct = (\mathbf{u}, v)

Let χ be distribution on \mathbb{Z} .

 $\mathsf{KGen}(1^{\lambda})$: \blacktriangleright $\mathbf{A} \leftarrow \mathsf{Unif}(\mathbb{Z}_q^{n \times n})$ and $\mathbf{s}, \mathbf{e} \leftarrow \chi^n$ $\begin{array}{|c|c|c|c|}\n\hline\nA & A & B & e = b\n\end{array}$ \bullet **b** = **As** + **e** mod *q* \triangleright Output sk = s and pk = (\mathbf{A}, \mathbf{b}) • Enc(pk, $m \in \{0, 1\}$): \blacktriangleright **r**, $f \leftarrow \chi^n$ and $f' \leftarrow \chi$ $\begin{array}{|c|c|c|c|c|}\hline \textbf{r} & \textbf{A} & \textbf{b} & + & \textbf{f} & \textbf{f} \ \hline \end{array}$ $\sqrt{1 + \sqrt{1 - \ln n}}$ $\mathbf{u} = \mathbf{r}\mathbf{A} + \mathbf{f}$ $\blacktriangleright v = \mathbf{rb} + f' + \lfloor q/2 \rfloor \cdot m$ \blacktriangleright Output ct = (\mathbf{u}, v) Dec(sk, ct): % a ▶ If $v -$ us is closer to 0 than to $q/2$, output $m' = 0$ ▶ Else output $m' = 1$

Correctness:

$$
v - \textbf{us} = \textbf{r(As + e)} + f' + \lfloor q/2 \rfloor \cdot m - (\textbf{rA} + \textbf{f})\textbf{s}
$$

$$
= \textbf{re} + f' - \textbf{fs} + \lfloor q/2 \rfloor m
$$

$$
\text{where } f \mid \textbf{s} \mid < q/8
$$

Decryption succeeds if |∗| < q/8

Correctness: Let χ be B-bounded with $2nB^2 + B < q/8$

$$
v - \textbf{us} = \mathbf{r}(\mathbf{As} + \mathbf{e}) + f' + \lfloor q/2 \rfloor \cdot m - (\mathbf{r}\mathbf{A} + \mathbf{f})\mathbf{s}
$$

$$
= \underbrace{\mathbf{re} + f' - \mathbf{fs} + \lfloor q/2 \rfloor m}_{\text{\text{*}ciphertext noise}}
$$

Decryption succeeds if $|*| < q/8$

$$
|*| = |\mathbf{re} + f' - \mathbf{fs}| \le ||\mathbf{r}||_2 \cdot ||\mathbf{e}||_2 + ||\mathbf{f}||_2 \cdot ||\mathbf{s}||_2 + |f'| \le 2(\sqrt{n}B \cdot \sqrt{n}B) + B < q/8
$$

▶ Else output $m' = 1$

Semantic Security: Assume hardness of decision LWE

- 1. replace b by uniform random vector
- 2. replace non-message part (∗) by uniform random vector
- 3. then the message is completely hidden

Kyber - Selected for Standardization by NIST

 \mathbb{C}^2 Kyber = the previous construction + several improvements

Main improvements:

- 1. Structured LWE variant (most important)
- 2. LWE secret and noise from centered binomial distribution
- 3. Pseudorandomness for distributions
- 4. Ciphertext compression

Sources:

- Website of Kyber: <https://pq-crystals.org/kyber/>
- **•** Latest specifications [\[link\]](https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf)
- **Tutorial by V. Lyubashevsky [\[link\]](https://drive.google.com/file/d/1JTdW5ryznp-dUBBjN12QbvWz9R41NDGU/view?pli=1)**

Example Parameters for Learning With Errors

Kyber Parameters:

 $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$, $\mathbf{s} \leftarrow D_s$, $\mathbf{e} \leftarrow D_e$ $m = ?$ \bullet $n = ?$ $q = ?$ $D_e = ?$ $D_s = ?$

[⋆] <https://github.com/malb/lattice-estimator>

Example Parameters for Learning With Errors

Kyber Parameters:

- $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$, $\mathbf{s} \leftarrow D_s$, $\mathbf{e} \leftarrow D_e$
- \bullet $m = n$
- \bullet $n = ?$
- $q = ?$
- $D_e = ?$

⋆ <https://github.com/malb/lattice-estimator>

Part 4:

What are (my) current challenges?

Katharina Boudgoust (CNRS, LIRMM) [Lattice-Based Cryptography](#page-0-0) 12th July 2024, ICO Montpellier 19/29

Reminder: Public-Key Encryption (PKE)

A public-key encryption scheme $\Pi = (KGen, Enc, Dec)$ consists of three algorithms:

- KGen $(1^{\lambda}) \rightarrow (sk, pk)$ λ security parameter
- Enc(pk, m) \rightarrow ct
- Dec(sk, ct) = m'

Reminder: Public-Key Encryption (PKE)

A public-key encryption scheme $\Pi = (KGen, Enc, Dec)$ consists of three algorithms:

• KGen $(1^{\lambda}) \rightarrow (sk, pk)$

 λ security parameter

- Enc(pk, m) \rightarrow ct
- Dec(sk, ct) = m'

 \hat{C} The secret key sk can be seen as a single point of failure.

- **Someone else learns it: security issue**
- I loose it: operability issue

Youtuber Loses \$60,000 In Crypto and NFTs After Exposing His Private Key **While Live Streaming**

By Newton Gitonga - September 2, 2023

DARRYN POLLOCK

NOV 30, 2017

Infamous Discarded Hard Drive Holding 7.500 Bitcoins Would be Worth \$80 Million Today

Cryptonews . Altopin News . LHV Bank Founder Has Lost Private Key to ETH Stash Worth \$470 Million

LHV Bank Founder Has Lost Private Key to ETH Stash Worth \$470 Million

Last updated: November 7, 2023 02:36 EST | 2 min read

4 X in at m

Motivation Threshold Cryptography [\[DF89\]](#page-56-2)*

 \hat{C} The secret key can be seen as a single point of failure.

 $\sqrt{\ }$ Idea: divide the secret key into multiple shares

■ Better security: multiple secret key shares needed

2 Better operability: not necessarily all secret key shares needed

[⋆]Desmedt and Frankel, Threshold Cryptosystems, CRYPTO'89

Threshold Public-Key Encryption

PKE scheme:

- KGen \rightarrow (pk, sk)
- $Enc(\mathsf{pk}, m) \to ct$ m $\in \{0, 1\}$

• Dec(sk, ct) \rightarrow m

Threshold Public-Key Encryption

t -out-of- n Threshold PKE scheme:

- $\mathsf{KGen} \to (\mathsf{pk},\mathsf{sk}_1,\ldots,\mathsf{sk}_n)$
- $Enc(\mathsf{pk}, m) \to ct$ m $\in \{0, 1\}$
- $\mathsf{PartDec}(\mathsf{sk}_i, \mathsf{ct}) \to d_i$
- Combine(${d_i}_{i \in S}$) $\rightarrow m$

$S \subseteq \{1, \ldots, n\}$

Threshold Public-Key Encryption

t -out-of- n Threshold PKE scheme:

- $\mathsf{KGen} \to (\mathsf{pk},\mathsf{sk}_1,\ldots,\mathsf{sk}_n)$
- \bullet Enc(pk, m) \rightarrow ct m \bullet m \in {0, 1}
- $\mathsf{PartDec}(\mathsf{sk}_i, \mathsf{ct}) \to d_i$ $S \subseteq \{1,\ldots,n\}$
- Combine(${ d_i }_{i \in S}$) $\rightarrow m$

Properties:

• Correctness the contraction of the message of t parties can recover the message • Security **Security Security less than t parties learn nothing about message**

Applications:

- **Encrypting highly sensitive data**
- Electronic voting protocols

Research Question

Can we construct Threshold Public-Key Encryption based on Euclidean Lattices?

[⋆]Bendlin and Damgaard, Threshold decryption and zero-knowledge proofs for lattice-based cryptosystems, TCC'10

[⋆]Boudgoust and Scholl, Simple threshold (fully homomorphic) encryption from LWE with polynomial modulus, Asiacrypt'23

[⋆]Micciancio and Suhl, Simulation-Secure Threshold PKE from LWE with Polynomial Modulus, e-print'23

Research Question

Can we construct Threshold Public-Key Encryption based on Euclidean Lattices?

Yes, but \ldots

[⋆]Bendlin and Damgaard, Threshold decryption and zero-knowledge proofs for lattice-based cryptosystems, TCC'10

[⋆]Boudgoust and Scholl, Simple threshold (fully homomorphic) encryption from LWE with polynomial modulus, Asiacrypt'23

[⋆]Micciancio and Suhl, Simulation-Secure Threshold PKE from LWE with Polynomial Modulus, e-print'23

Research Question

Can we construct Threshold Public-Key Encryption based on Euclidean Lattices?

Yes, but \ldots

[⋆]Bendlin and Damgaard, Threshold decryption and zero-knowledge proofs for lattice-based cryptosystems, TCC'10

[⋆]Boudgoust and Scholl, Simple threshold (fully homomorphic) encryption from LWE with polynomial modulus, Asiacrypt'23

[⋆]Micciancio and Suhl, Simulation-Secure Threshold PKE from LWE with Polynomial Modulus, e-print'23

Reminder: Public-Key Encryption from LWE [\[Reg05\]](#page-56-1)

Let χ be distribution on \mathbb{Z} .

▶ Else output $m' = 1$

Correctness:

$$
v - \textbf{us} = \textbf{r(As + e)} + f' + \lfloor q/2 \rfloor \cdot m - (\textbf{rA + f})\textbf{s}
$$

$$
= \underbrace{\textbf{re} + f' - \textbf{fs}}_{\textbf{k} \text{z}} + \lfloor q/2 \rfloor m
$$

$$
\text{E} \left| \textbf{s} \right| < q/8 \qquad \text{K} \text{ciphertext noise}
$$

Decryption succeeds if $|*| < q/8$

US National Institute of Standards and Technology (NIST) Project $\overline{\mathsf{X}}$

- 2023: initial public draft for Multi-Party Threshold Cryptography^{*}
- 2025: expected submission?

 \mathbb{C} Threshold cryptography attracts a lot of research interest at the moment.

[⋆] <https://csrc.nist.gov/Projects/threshold-cryptography>

Bonus: A little Quiz :-)

When poll is active respond at PollEy.com/katharinaboudgoust042

Little Quiz after the gentle introduction to lattice-based cryptography (ICO)

Win up to 1,000 points per answer

Powered by **OD** Poll Everywhere

Wrap-Up

 \blacksquare Hopefully you have now a rough idea:

- **Part 1: What lattices are!**
- Part 2: What lattice problems are!
- Part 3: What lattice-based cryptography is!
- Part 4: What (my) particular challenges are!

Any questions or interested in my research?

- Reach out to me today
- \bullet Write me an e-mail

Wrap-Up

 \blacksquare Hopefully you have now a rough idea:

- **Part 1: What lattices are!**
- Part 2: What lattice problems are!
- Part 3: What lattice-based cryptography is!
- Part 4: What (my) particular challenges are!

Any questions or interested in my research?

- Reach out to me today
- \bullet Write me an e-mail

Merci !

Rikke Bendlin and Ivan Damgård.

Threshold decryption and zero-knowledge proofs for lattice-based cryptosystems. In TCC, volume 5978 of Lecture Notes in Computer Science, pages 201–218. Springer, 2010.

Katharina Boudgoust and Peter Scholl.

Simple threshold (fully homomorphic) encryption from LWE with polynomial modulus.

In ASIACRYPT (1), volume 14438 of Lecture Notes in Computer Science, pages 371–404. Springer, 2023.

Yvo Desmedt and Yair Frankel.

Threshold cryptosystems.

In CRYPTO, volume 435 of Lecture Notes in Computer Science, pages 307–315. Springer, 1989.

Daniele Micciancio and Adam Suhl.

Simulation-secure threshold PKE from LWE with polynomial modulus. IACR Cryptol. ePrint Arch., page 1728, 2023.

Oded Regev.

On lattices, learning with errors, random linear codes, and cryptography. In STOC, pages 84–93. ACM, 2005.

Peter W. Shor.

Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer.

SIAM J. Comput., 26(5):1484–1509, 1997.